Integrating the voice of customers through call center emails into a decision support system for churn prediction
نویسندگان
چکیده
We studied the problem of optimizing the performance of a DSS for churn prediction. In particular, we investigated the beneficial effect of adding the voice of customers through call center emails – i.e. textual information to a churn prediction system that only uses traditional marketing information. We found that adding unstructured, textual information into a conventional churn prediction model resulted in a significant increase in predictive performance. From a managerial point of view, this integrated framework helps marketing-decision makers to identify customers most prone to switch. Consequently, their customer retention campaigns can be targeted effectively because the prediction method is better at detecting those customers who are likely to leave.
منابع مشابه
Development of a QFD-based expert system for CNC turning centre selection
Computer numerical control (CNC) machine tools are automated devices capable of generating complicated and intricate product shapes in shorter time. Selection of the best CNC machine tool is a critical, complex and time-consuming task due to availability of a wide range of alternatives and conflicting nature of several evaluation criteria. Although, the past researchers had attempted to select ...
متن کاملCustomer churn prediction using improved balanced random forests
Churn prediction is becoming a major focus of banks in China who wish to retain customers by satisfying their needs under resource constraints. In churn prediction, an important yet challenging problem is the imbalance in the data distribution. In this paper, we propose a novel learning method, called improved balanced random forests (IBRF), and demonstrate its application to churn prediction. ...
متن کاملHierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction
As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...
متن کاملOptimizing Coverage of Churn Prediction in Telecommunication Industry
Companies are investing more in analytics to obtain a competitive edge in the market and decision makers are required better identification among their data to be able to interpret complex patterns more easily. Alluring thousands of new customers is worthless if an equal number is leaving. Business Intelligence (BI) systems are unable to find hidden churn patterns for the huge customer base. In...
متن کاملModelling Customer Attraction Prediction in Customer Relation Management using Decision Tree: A Data Mining Approach
In Today’s quality- based competitive world, known as knowledge age, customer attraction is of ultimate importance. In respect to the slogan “customer is always right”, customer relation management is the core of an organizational strategy playing an important role in four aspects of customer identification, customer attraction, customer retaining, and customer satisfaction. Commercial organiza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information & Management
دوره 45 شماره
صفحات -
تاریخ انتشار 2008